руководство по эксплуатации насосная станция **Аквамастер**

для системы водоподготовки бассейна с регулированием циркуляционного расхода и скорости фильтрации

СОДЕРЖАНИЕ

1. ОБЩИЕ ПОЛОЖЕНИЯ	3
1.1 ОБЩИЕ ДАННЫЕ	3
1.2 КВАЛИФИКАЦИЯ ПЕРСОНАЛА	
1.3 УКАЗАНИЯ ПО БЕЗОПАСНОСТИ	
1.4 ОПАСНОСТИ НЕСОБЛЮДЕНИЯ УКАЗАНИЙ ПО БЕЗОПАСНОСТИ	3
1.5 НЕДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ	3
1.6 ТРАНСПОРТИРОВКА И ХРАНЕНИЕ	
1.7 МАРКИРОВКА	
1.8 КОНСЕРВАЦИЯ И УПАКОВКА	4
2. ОПИСАНИЕ И РАБОТА	4
2.1 НАЗНАЧЕНИЕ	2
2.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	
2.3 РЕКОМЕНДАЦИИ К ПОДБОРУ НАСОСНОЙ СТАНЦИИ	
2.4 СОСТАВ ИЗДЕЛИЯ	
2.4.1 ГИДРАВЛИЧЕСКАЯ ЧАСТЬ	
2.4.2 ЭЛЕКТРОСИЛОВАЯ ЧАСТЬ	
2.5 УСТРОЙСТВО И РАБОТА	
2.6 РЕЖИМЫ УПРАВЛЕНИЯ. НАСТРОЙКА ПАРАМЕТРОВ И РАБОТЫ	
2.6.1 МЕСТНЫЙ РЕЖИМ	
2.6.2 ДИСТАНЦИОННЫЙ РЕЖИМ	S
3. МОНТАЖ, ПОДКЛЮЧЕНИЕ	c
3.1 ПОДГОТОВКА К МОНТАЖУ	S
3.2 MOHTAЖ	
3.3 ПОДКЛЮЧЕНИЕ	
3.4 ПУСК, ОБКАТКА, ВВОД В ЭКСПЛУАТАЦИЮ	
3.4.1 ПУСК	
3.4.2 OFKATKA	
3.4.3 ВВОД В ЭКСПЛУАТАЦИЮ В МЕСТНОМ РЕЖИМЕ	
3.4.4 ВВОД В ЭКСПЛУАТАЦИЮ В ДИСТАНЦИОННОМ РЕЖИМЕ	11
4. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	12
4.1 ОБЩЕЕ НАБЛЮДЕНИЕ	
4.2 ТЕХНИЧЕСКИЙ ОСМОТР	
4.3 ПРОФИЛАКТИЧЕСКИЙ РЕМОНТ	12
5. ГАРАНТИЯ	12
6. МОНТАЖНЫЕ СХЕМЫ	13
6.1 Схема внешних подключений шкафа управления	

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1 ОБЩИЕ ДАННЫЕ

Руководство по эксплуатации содержит общие указания, которые следует соблюдать при установке и вводе в эксплуатацию насосной станции "Аквамастер" (далее по тексту — "насосная станция" или "HC"). Технический специалист и пользователь должны изучить данное руководство перед монтажом и вводом в эксплуатацию настоящего оборудования.

Насосные станции производятся в соответствии с ТУ 28.13.14-001-35038275-2021 и отвечают требованиям ТР ТС 004/2011 "О Безопасности низковольтного оборудования", ТР ТС 010/2011 "О безопасности машин и оборудования", ТР ТС 020/2011 "Электромагнитная совместимость технических средств".

1.2 КВАЛИФИКАЦИЯ ПЕРСОНАЛА

Монтаж, ПНР, эксплуатацию, техническое обслуживание и ремонт разрешается проводить только персоналу, имеющему соответствующую квалификацию для проведения данного вида работ.

Пользователь несёт ответственность за то, что все работы выполняются авторизованным и квалифицированным персоналом, хорошо ознакомленным с содержанием данного руководства.

1.3 УКАЗАНИЯ ПО БЕЗОПАСНОСТИ

Для предотвращения несчастных случаев необходимо соблюдать "Правила устройств электроустановок" (ПУЭ), "Правила технической эксплуатации энергоустановок потребителей" (ПТЭ) и "Правила техники безопасности при эксплуатации энергоустановок потребителей" (ПТБ).

Необходимо исключить любую вероятность поражения электрическим током.

Необходимо соблюдать местные нормы и правила по технике безопасности.

Все работы с оборудованием разрешено выполнять только после его полной остановки, в выключенном состоянии.

1.4 ОПАСНОСТИ НЕСОБЛЮДЕНИЯ УКАЗАНИЙ ПО БЕЗОПАСНОСТИ

Несоблюдение указаний может стать причиной возникновения следующих последствий:

- травмирование персонала в результате электрических или механических воздействий;
- отказ важных функций насосной станции или иных частей оборудования;
- механические повреждения насосной станции;
- материальный ущерб, связанный с длительным простоем установки;
- снятие оборудования с гарантии и потере права на требование возмещения ущерба.

1.5 НЕДОПУСТИМЫЕ РЕЖИМЫ ЭКСПЛУАТАЦИИ

Эксплуатационная надежность поставляемого оборудования гарантируется только в случае использования ее по назначению в соответствии с разделом "НАЗНАЧЕНИЕ". При эксплуатации запрещается выходить за рамки предельных значений, указанных в "ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИКАХ" для каждой модели.

1.6 ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

Насосная станция "Аквамастер" поставляется на паллете или деревянной раме. Электрический шкаф предохраняется плёночной упаковкой от попадания пыли и влаги. Перемещение и такелажные работы следует выполнять с помощью специализированных подъёмно-транспортных машин. При этом необходимо обеспечивать устойчивость, т.к. в связи с конструктивными особенностями оборудования центр тяжести смещён вверх. Транспортные ремни закреплять на монтажных проушинах или к станине насосной станции.

ВНИМАНИЕ! Трубопроводы не предназначены для подъёма насосной станции или использования их в качестве упоров при транспортировке. Это может привезти к их разуплотнению или повреждению.

Во время хранения принять соответствующие меры по защите насосной станции от попадания влаги, воздействия низких и высоких температур, а так же от механических повреждений. Допустимая температура транспортировки и хранения от -25 °C до + 45 °C, при относительной влажности не более 90%.

Если насосная станция перемещена из холодной окружающей среды в тёплую, на ней возможно образование конденсата. Необходимо дождаться исчезновения всех видимых признаком конденсата перед подключением и подачей питающего напряжения.

1.7 МАРКИРОВКА

Маркировка НС наносится на фирменную табличку, выполненную и установленную согласно требованиям ТУ 28.13.14-001-35038275-2021 и ТР ТС 010/2011. На табличке содержатся следующие данные:

- наименование и товарный знак предприятия поставщика;
- наименование и обозначение насосной станции;
- номер сертификата соответствия;
- заводской серийный номер (по системе нумерации предприятия поставщика);
- единый знак обращения продукции на рынке государств членов Таможенного союза;
- месяц и год изготовления;
- основные технические характеристики (номинальные параметры).

1.8 КОНСЕРВАЦИЯ И УПАКОВКА

Оборудование НС, приспособления и специальный инструмент (при наличии), запасные части подвергаются консервации по ТУ 28.13.14-001-35038275-2021.

Упаковка и раскрепление составных частей осуществляются в соответствии с требованиями эксплуатационной документации (ЭД). Упаковка обеспечивает сохранность составных частей НС при транспортировании и хранении.

Консервация и упаковка обеспечивают сохранность составных частей НС от коррозии и загрязнения в течение 24 месяцев со дня отгрузки с завода-изготовителя при соблюдении условий транспортирования и хранения, изложенных в эксплуатационной документации.

2. ОПИСАНИЕ И РАБОТА

2.1 НАЗНАЧЕНИЕ

Насосная станция "Аквамастер" предназначена для использования в бассейнах с рециркуляционным (оборотным) типом водообмена. Применяется с целью обеспечения водообмена, соответствующего нормативным требованиям СП 2.1.3678-20 "Санитарно-эпидемиологические требования к эксплуатации помещений, зданий, сооружений, оборудования...".

Используется в системах водоподготовки бассейнов дошкольных и школьных образовательных учреждениях, физкультурно-оздоровительных комплексах, спортивных объектов и других бассейнах общественного назначения.

Применение насосной станции "Аквамастер" позволяет поддерживать круглосуточную и бесперебойную работу контура циркуляции, обеспечивает заданный циркуляционный расход и необходимый для этого напор в режимах фильтрации и промывки, повышает эффективность процесса коагулирования.

Возможность регулирования циркуляционного расхода в дневное и ночное время позволяет регулировать скорость фильтрации на напорных фильтрах, что сокращает расход химических реагентов, уменьшает потребление электроэнергии. Плавный запуск и остановка электродвигателей насосной станции защищает технологическое оборудование и арматуру от гидравлических ударов.

2.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Насосная станция "Аквамастер" является типовым узлом системы водоподготовки, отвечающим за циркуляцию. Поставляется в виде компактного модуля, полностью укомплектованного, смонтированного и готового для подключения и ввода в эксплуатацию. Внешний вид и расположение элементов представлены на рисунке 1.

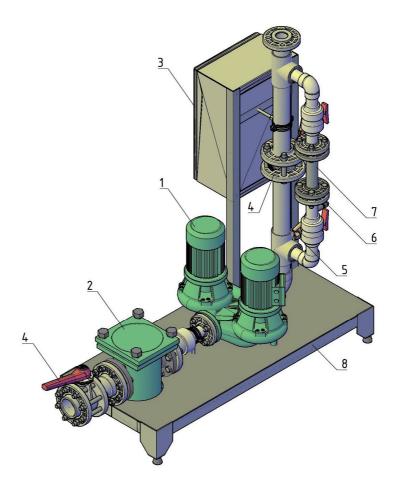


Рис. 1. Внешний вид

Комплектация насосной станции:

- 1. Насос циркуляционный сдвоенный
- 2. Префильтр грубой очистки
- 3. Шкаф управления
- 4. Дисковый затвор ПВХ
- 5. Манометр
- 6. Клапан впрыска коагулянта
- 7. Статический смеситель
- 8. Станина

Модельный ряд насосной станции представлен четырьмя модификациями. Технические характеристики моделей соответствуют данным, указанным на рисунке 2 и в таблице 1.

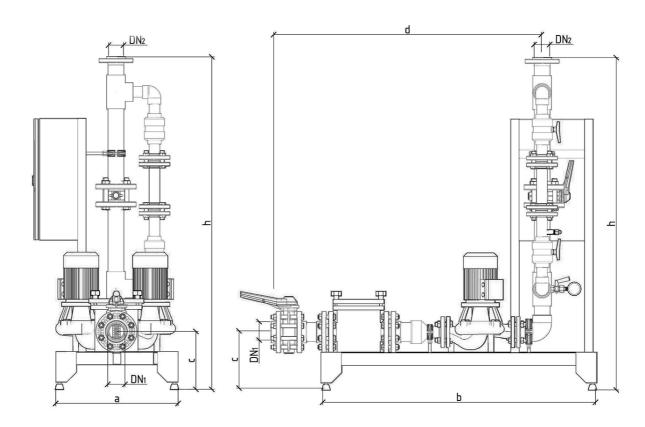


Рис. 2. Габаритные размеры

Таблица 1

Модель	DN ₁ , мм	DN ₂ , мм	а, мм	b, мм	C, MM	d, мм	h, мм	т, кг
PS 15-40	110	90	750	1650	285	1400	1600	230
PS 40-80	140	125	750	1900	305	1600	1700	330
PS 80-130	200	160	850	2500	365	2100	1800	575
PS 130–260	250	225	950	2700	365	2300	1800	810

Рабочие характеристики моделей соответствуют данным, указанным в таблице 2.

Таблица 2

Модель	Q ¹ , м³/ч		О, В	Р², кВт		I³, A	
	min	мах		min	мах	min	мах
PS 15-40	15	40		1,5	3,0	6,0	11,5
PS 40-80	40	80	400	3,5	7,5	13,0	24,8
PS 80-130	80	130		7,5	15,0	22,0	42,0
PS 130–260	130	260		11,0	22,0	21,0	41,2

 $^{^{1}}$ Указаны минимальная и максимальная границы рабочего диапазона производительности.

 $^{^{2}}$ Указаны минимальная и максимальная потребляемая электрическая мощность.

³ Указаны минимальный и максимальный потребляемый ток.

2.3 РЕКОМЕНДАЦИИ К ПОДБОРУ НАСОСНОЙ СТАНЦИИ

Подбор насосной станции производится в соответствии с таблицей 3 по объёму бассейна в зависимости от его назначения и времени водообмена.

Таблица 3

	Объём бассейна ¹ , м³					
Модель	Назначение/время водообмена ² , ч					
	детский	/учебный	02500000470511114/6	спортивный/8		
	до 7 лет/0,5	старше 7 лет/2	оздоровительный/6			
PS 15-40	7,5–20	30–80	90–240	120–320		
PS 40-80	20–40	80–160	240–480	320–640		
PS 80-130	_	160–260	480–780	640–1040		
PS 130–260	_	260–520	780–1560	1040–2080		

¹ Допустимые границы объёмов рассчитаны исходя из необходимой кратности водообмена и рабочего диапазона производительности насосных станций.

2.4 СОСТАВ ИЗДЕЛИЯ

Насосная станция состоит из гидравлической и электросиловой частей, смонтированных на единой платформе. Гидравлическая часть обеспечивает напор и циркуляционный расход воды в системе водоподготовки. Электросиловая часть отвечает за электропитание моторов насосной станции, их защиту и работу в разных режимах эксплуатации.

2.4.1 ГИДРАВЛИЧЕСКАЯ ЧАСТЬ

Все модели насосной станции "Аквамастер" собираются по единой технологической схеме, указанной на рисунке 3. Отличия состоят в мощности применяемого насоса, размерах префильтра грубой очистки, диаметров трубопровода обвязки и запорной арматуры, габаритных размерах монтажной платформы.

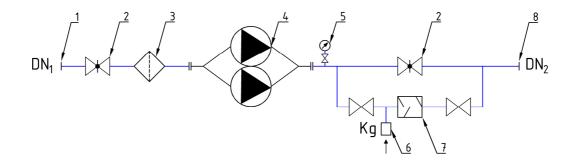


Рис. 3. Технологическая схема насосной станции "Аквамастер"

- 1. Фланец подключения всасывающего трубопровода (вход)
- 2. Запорная арматура (дисковый затвор)
- 3. Префильтр грубой очистки
- 4. Насос циркуляционный сдвоенный
- 5. Манометр
- 6. Клапан впрыска коагулянта
- 7. Статический смеситель
- 8. Фланец подключения напорного трубопровода (выход)

² Данные приняты в соответствии с СП 2.1.3678-20 "Санитарно-эпидемиологические требования к эксплуатации помещений, зданий, сооружений, оборудования..."

2.4.2 ЭЛЕКТРОСИЛОВАЯ ЧАСТЬ

Электросиловая часть насосной станции "Аквамастер" состоит из шкафа управления, смонтированными внутри него контроллером, преобразователем частоты (ПЧ) и пускорегулирующей аппаратурой. В зависимости от модели, отличаются мощность ПЧ, номиналы автоматических выключателей и контакторов.

Шкаф управления смонтирован на монтажной платформе и соединён кабелями с моторами насоса. Внешний вид и расположение органов управления шкафа представлены на рисунке 4.

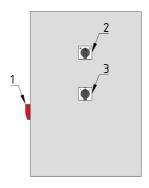


Рис. 4. Внешний вид

- 1. Вводной рубильник
- 2. Переключатель режима управления ("Местный"/"Дистанционный")
- 3. Переключатель выбора рабочего мотора в местном режиме ("1"/"0"/"2")

2.5 УСТРОЙСТВО И РАБОТА

Насосная станция "Аквамастер" является заменой типовой насосной группы, состоящей из 2-х и более насосов, префильтров, параллельной трубной обвязки с отсекающими кранами и обратными клапанами.

Решение с одним насосом и одним префильтром делает возможным упростить технологическую схему обвязки, сократить количество применяемого оборудования и материалов, повысить надёжность и автоматизировать технологический узел, отвечающий за рециркуляцию. Конструкция насоса с 2-мя вертикально установленными электрическими моторами на общем корпусе требует меньшего монтажного пространства, сохраняя 100% резервирование. Комплектующие монтируются на едином каркасе (станине), что позволяет достигнуть максимально компактных размеров типового узла системы водоподготовки, упростить монтаж на объекте и обеспечить более удобный доступ при эксплуатации.

Принцип работы насосной станции заключается в поддержании рециркуляционного водообмена, соответствующего нормативным требованиям и назначению бассейна. Возможность регулирования производительности НС позволяет настраивать необходимый циркуляционный расход в режиме фильтрации, компенсируя гидравлическое сопротивление системы водоподготовки. Это так же позволяет настроить требуемый объёмный расход для промывки напорных фильтров, независимо от их конструкции, высоты засыпки и типа фильтрующего наполнителя.

Встроенный узел дозирования коагулянта предназначен для ввода реагента вызывающего слипание мелких частиц и дальнейшего их отфильтровывания на следующей ступени системы водоподготовки. Необходимым элементом в этом узле является статический смеситель, обеспечивающий максимально эффективное перемешивание реагента по объёму обрабатываемой воды. Наличие смесителя определяет целесообразность дозирование коагулянта.

Характеристики работы насосной станции в разных режимах определяются проектным решением и задаются во время проведения пуско-наладочных работ. Широкий настраиваемый рабочий диапазон производительности позволяет обеспечить требуемый циркуляционный расход даже в случае несоответствия расчетного и фактического гидравлического сопротивления системы водоподготовки.

2.6 РЕЖИМЫ УПРАВЛЕНИЯ. НАСТРОЙКА ПАРАМЕТРОВ И РАБОТЫ.

Насосная станция имеет два режима управления— местный и дистанционный. Выбор режима осуществляется переключателем на корпусе шкафа управления. Режим работы "местный" рекомендуется использовать во время проведения индивидуальных и комплексных испытаний, а так же для систем водоподготовки с релейной логикой управления. Режим работы "дистанционный" используется в системах водоподготовки под управлением АСУ.

2.6.1 МЕСТНЫЙ РЕЖИМ

В местном режиме насос работает со 100%-ной производительностью. Переключателем выбора рабочего мотора определяется рабочий мотор насоса во время циркуляции и промывки (положение "1" или "2"). В положение "0" оба насоса выключены.

Управление работой НС происходит посредством внешнего разрешающего нормально разомкнутого сухого контакт. Производительность насосной станции регулируется вручную дисковым затвором на напорном трубопроводе (трубопровод подачи).

ВНИМАНИЕ! Регулирование производительности дисковым затвором всасывающего трубопровода запрещено. Водяное голодание насоса приводит к его перегреву и поломке.

2.6.2 ДИСТАНЦИОННЫЙ РЕЖИМ

В дистанционном режиме работой и производительностью насосной станции управляет Комплексная автоматизация системы водоподготовки по интерфейсу RS-485, протокол Modbus RTU. Ввод параметров работы насосной станции осуществляется через операторскую панель Комплексной автоматизации. При этом алгоритмы работы программного обеспечения Комплексной автоматизации должны поддерживать следующие команды:

- включение/выключение насосной станции и каждого мотора в отдельности;
- смена работы моторов в зависимости от наработки моторесурса;
- переключение на резервный мотор в случае отказа рабочего;
- контроль давления в системе водоподготовки;
- поддержание заданной уставки производительности работы насосной станции в режимах фильтрации, промывки, ополаскивания;
 - регулирование производительности в режимах "День"/"Ночь"/"Промывка";
 - отображение циркуляционного расхода в течение суток.

В автоматическом режиме переключатель выбора рабочего мотора на шкафу управления не активен.

3. МОНТАЖ, ПОДКЛЮЧЕНИЕ

3.1 ПОДГОТОВКА К МОНТАЖУ

Прежде, чем приступить к монтажу насосной станции необходимо:

- ознакомиться с технической документацией на насосную станцию;
- проверить соответствие технических характеристик насосной станции по производительности и давлению к применяемому оборудованию системы водоподготовки;
- проверить соответствие условий электроподключения на объекте техническим характеристикам насосной станции;

Необходимо предотвратить попадание загрязнений в насосную станцию в процессе монтажа. При обнаружении загрязнения — промыть и продуть.

Насосную станцию необходимо применять в строгом соответствии с её назначением в части рабочих параметров, сред, условий эксплуатации, характеристик надежности и безопасности.

3.2 МОНТАЖ

Насосная станция должна быть размещена в месте, доступном для удобного и безопасного монтажа, эксплуатации, обслуживания и ремонта.

Работы по монтажу и вводу в эксплуатацию (демонтажу и выводу из эксплуатации) насосной станции должны выполняться:

- назначенными на выполнение таких работ должностными лицами, прошедшими необходимое обучение и инструктаж;
 - с соблюдением требований безопасности и мер предосторожности при выполнении таких работ.

Необходимо выполнить крепление подводящего и отводящего трубопровода так, чтобы исключить нагрузку от него на трубопровод обвязки насосной станции во время монтажа и эксплуатации.

Заземлить насосную стацию в соответствии с ПУЭ.

3.3 ПОДКЛЮЧЕНИЕ

Электроподключение насосной станции должно производиться квалифицированным специалистом по электромонтажным работам.

Ввод кабелей осуществляется через нижнюю стенку шкафа управления. Кабели к месту установки подводятся маркой, количеством жил и сечением в соответствии с таблицей 4.

Таблица 4

Модель	PS 15–30	PS 40-80	PS 80-130	PS 130–260		
Марка кабеля	ВВГнг(A)-LSLTx ¹					
Сечение силового кабеля, мм	4x2,5	4x6,0	4×10,0	4×10,0		
Марка и сечение управ- ляющего кабеля ² , мм	FTP 4x2x0,51-LSZH cat 5 (8P8C) ¹					

 $^{^1}$ Марка указана для класса пожарной опасности кабеля П16.8.2.1.2. Для другого класса пожарной опасности и области применения кабеля, марку принять согласно ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности».

Подключение производится в соответствии со Схемой внешних подключений (см. п. 6)

ВНИМАНИЕ! Некорректное подключение оборудования, несоответствие марки и сечения кабелей может привести к поломке насосной станции и аннулировании гарантии.

3.4 ПУСК, ОБКАТКА, ВВОД В ЭКСПЛУАТАЦИЮ

Перед запуском насосной станции необходимо заполнить водой всю систему водоподготовки, стравить воздух из "воздушных карманов", открыть отсекающие задвижки технологического оборудования и байпасов.

ВНИМАНИЕ! Работа моторов насоса без рабочей среды более 1 минуты может привести к заклиниванию узлов насосной станции.

3.4.1 ПУСК

На корпусе шкафа управления переключатель выбора рабочего мотора, перевести в положение "0". Переключатель режима управления насосной станции перевести в положение "Местный". Подать питание на насосную станцию. Вводной рубильник в шкафу управления перевести в положение "Вкл".

Перевести переключатель выбора рабочего мотора, в положение "1", произведя кратковременный пуск, продолжительностью не более 1 минуты. Убедиться в отсутствии посторонних шумов при работе насосной станции, возможных протечек и беспрепятственной циркуляции воды в системе водоподготовки. Повторить процедуру пробного пуска со вторым мотором.

 $^{^{2}}$ При использовании Комплексной автоматизации в качестве системы управления верхнего уровня в автоматическом режиме.

Если насосная станция не запускается, необходимо её немедленно отключить и проверить всю электрическую схему, наличие напряжения в сети и его величину. После проверки произвести повторный пуск. Если насосная станция снова не запустилась, то это значит, что имеются неисправности и дальнейшие включения производить только после их выявления и устранения.

3.4.2 ОБКАТКА

Обкатка должна производиться до выхода насосной станции на заданные рабочие параметры производительности циркуляционного расхода. Продолжительность обкатки 20-30 минут для каждого мотора.

Цель обкатки:

- убедиться в нормальной работе насосной станции (отсутствие явлений, свидетельствующих о недостатках изготовления, сборки, монтажа повышенный или нехарактерный шум, вибрация, неравномерность хода);
 - проверка герметичности трубопровода системы водоподготовки;
- проверка настройки соответствия уставки рабочего и фактического давления в системе водоподготовки:
- проверка фактической производительности насосной станции и необходимых рабочих параметров.

В случае возникновения неисправностей, произвести останов насосной станции, устранить неполадки и продолжить обкатку. Насосная станция может быть принята к эксплуатации только после получения положительных результатов обкатки.

3.4.3 ВВОД В ЭКСПЛУАТАЦИЮ В МЕСТНОМ РЕЖИМЕ

В местном режиме управления насосная станция работает со 100%-ной производительностью. При этом обеспечивается:

- местный пуск и остановка насосной станции;
- защита от неправильной последовательности фаз;
- запуск по внешнему разрешающему сигналу ("сухой" контакт).

Производительность насосной станции регулируется дисковым затвором подающего трубопровода. Необходимо соблюдать кратность водообмена, соответствующую расчётному часовому циркуляционному расходу для данного бассейна в соответствии его назначением.

3.4.4 ВВОД В ЭКСПЛУАТАЦИЮ В ДИСТАНЦИОННОМ РЕЖИМЕ

В дистанционном режиме работой насосной станции управляет Комплексная автоматизация системы водоподготовки. Управление осуществляется по интерфейсу RS-485, протокол Modbus RTU. Убедитесь, что ваша система управления верхнего уровня поддерживает данный интерфейс. Все уставки параметров работы задаются через операторскую панель. При этом обеспечивается:

- дистанционный пуск и остановка насосной станции;
- поддержание заданной уставки производительности работы насосной станции в режимах фильтрации, промывки, ополаскивания;
 - режим работы "День"/"Ночь"/"Промывка";
 - смена работы моторов в зависимости от наработки моторесурса;
 - переключение на резервный мотор в случае отказа рабочего;
 - отображение циркуляционного расхода в течение суток;
 - логическая работа контура циркуляции в системе водоподготовки;
 - фиксирование параметров работы/настроек/аварийных ситуаций в электронном журнале;
 - контроль давления в системе водоподготовки;
- защита насосной станции и всего технологического оборудования системы водоподготовки по давлению;
 - защита силовой цепи от токов короткого замыкания;
 - защита от неправильного чередования фаз;

Данный режим эксплуатации является предпочтительным, т.к. он обеспечивает полноценную работу насосной станции в составе системы водоподготовки.

4. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Для поддержания насосной станции в работоспособном и исправном состоянии должно проводиться техническое обслуживание при использовании по назначению, нахождении в резерве, хранении и транспортировании.

При эксплуатации насосная станция должна подвергаться систематическому общему наблюдению, а также периодическому техническому осмотру и профилактическому ремонту.

4.1 ОБЩЕЕ НАБЛЮДЕНИЕ

При общем наблюдении проверяется:

- режим работы;
- бесперебойная правильная работа контрольно-измерительных приборов и аппаратуры, установленных на насосной станции;
 - состояние заземления;
 - отсутствие протечек трубопровода и фланцевых соединений.

4.2 ТЕХНИЧЕСКИЙ ОСМОТР

Периодичность технических осмотров устанавливается в зависимости от производственных условий, но не реже одного раза в месяц. При техническом осмотре произвести:

- очистку насосной станции от загрязнений;
- проверку состояния заземления;
- замер сопротивление изоляции, которое не должно быть при рабочей температуре ниже минимально допустимого 20 МОм;
 - отсутствие протечек трубопровода и фланцевых соединений;
 - очистку префильтра.

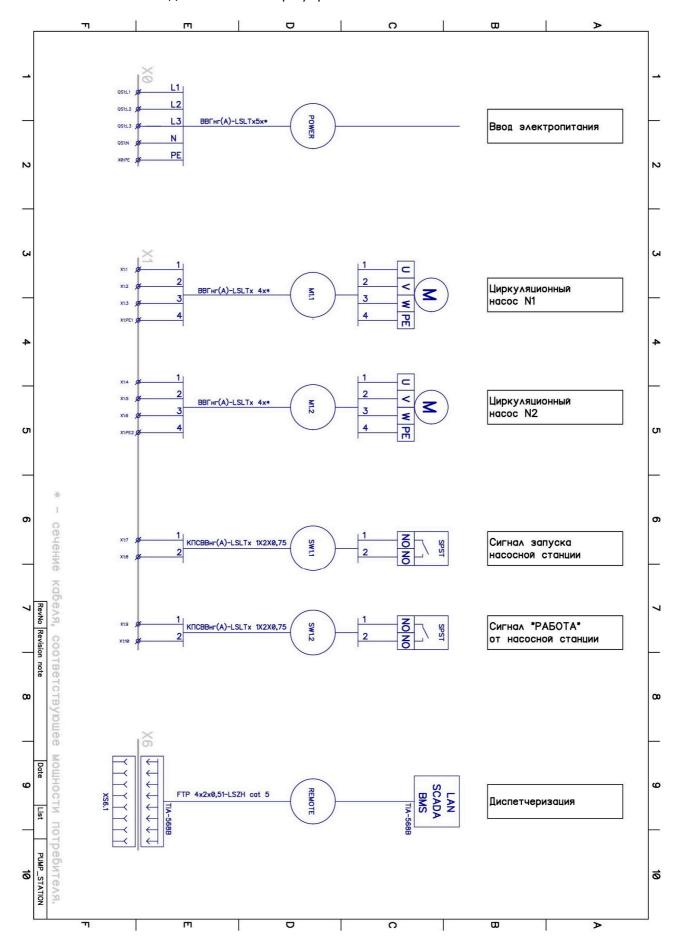
4.3 ПРОФИЛАКТИЧЕСКИЙ РЕМОНТ

Периодичность профилактических ремонтов устанавливается в зависимости от производственных условий, но не реже одного раза в год. При профилактическом ремонте:

- 1. Отключить насосную станцию от электрической сети, а затем от напорного трубопровода.
- 2. Демонтировать и разобрать.
- 3. Промыть и почистить узлы насосной станции.
- 4. В случае износа восстановить подшипниковые пары и торцевые уплотнения.

5. ГАРАНТИЯ

ВНИМАНИЕ! Неправильное электрическое подключение, несоответствие марки и сечения кабелей может привести к поломке насосной станции. При установлении данного факта гарантия на оборудование аннулируется.


Гарантийный срок 24 месяца с момента передачи оборудования.

Гарантия НЕ распространяется в следующих случаях:

- внесение изменений в конструкцию или механические повреждения;
- имеются повреждения, вызванные попаданием внутрь оборудования посторонних предметов;
- имеются повреждения, вызванные стихией, пожаром, случайными внешними факторами (перепады напряжения в электрической цепи, гроза и т.п.).

6. МОНТАЖНЫЕ СХЕМЫ

6.1 Схема внешних подключений шкафа управления

